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Presentation outline

* Particle swarm optimization

*Why a parameter-free algorithm ?

* TRIBES, the first parameter-free PSO algorithm
* CEC’'05 testing procedure

* Numerical results

 Conclusions and perspectives
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Particle Swarm
Optimization (1/4)
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Particle Swarm
Optimization (2/4)

e Stochastic method

 Biological inspiration (fish schooling and bird
flocking)
* Principle:
- Generation of a swarm of particles in the search space
- A fitness is associated to each particle

- Particles move according to their own experience and that of
the swarm

- Convergence made possible by the cooperation between
particles
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Particle Swarm
Optimization (3/4)

Strategy of displacement
To the best
performance of
the particle

New
@ position

To the best
performance of
the swarm

Current
position ®

Velocity To the point
accessible with
the current

velocity
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Particle Swarm
Optimization (4/4)
Algorithm

 Particles randomly initialized
in the search space

e 2 stopping criteria :

- Accuracy

- Number of evaluations of the
objective function
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Random Initialization of the swarm

Computation of the fithess
of each particle

Pi=Xi
Computation of g

Updating of velocities
and positions

Computation of the
fitness of
each particle

Updating of Pi, i=1,...N
Updating of g

Stopping criterion ?
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Why a parameter-free
algorithm ?

Common problem among all metaheuristics
Algorithms very dependent of parameters values

Time consuming to find the optimal value of a
parameter

The tendency is to reduce the number of "free"
parameters



TRIBES (1/4)

A parameter-free particle swarm optimization
algorithm

* Principles :

Swarm divided in "tribes"
At the beginning, the swarm is composed of only one particle

According to tribes’ behaviors, particles are added or
removed

According to the performances of the particles, their
strategies of displacement are adapted

Adaptation of the swarm according to the

q performances of the particles
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Tribes (2/4)

Structural adaptations

 Definition of a status for each tribe : good, neutral
or bad

 Definition of a status for each particle : good or
neutral

* Removal of a particle : worst particle of a good tribe

e Generation of a particle : improvement of
performances of a bad tribe
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Tribes (3/4)

Behavioral adaptations

3 possibilities of variations between 2 iterations :
- Improvement of the performance (+)

- Statu quo (=)
- Deterioration of the performance (-)

e Memorization of the 2 last variations

* Choice of the strategy of displacement according
to the 2 last variations

=+ 4 local by independent gaussians

+=)(¢4) disturbed pivot

() (=) () (=) (== pivot

10/23



Tribes (4/4)
Algorithm

structural adaptations must
not occur at each iteration

NL - information links number at

the moment of the last
adaptation

n : number of iterations since
the last swarm’s adaptation

4,(

Random initialization
of one particule x

)

A

( Evaluation f(x) )

for each particle

Determination of statuses >

Choice of the
displacement strategy

< Updating velocity and

position of the particles

p
)

< Evaluation f{x) >

A

C

Updating of p for each parti
Updating of g

ce >

Y

Determination of
tribes qualities

Y
Swarm's adaptation

(adding/removing particles,
restructuration of the information network)

Y

< Computation of NL )




CEC’05 testing procedure
(1/5)

 Defined during th IEEE Congress on Evolutionary
Computation 2005

e 2 tests:

— Error values for a fixed number of evaluations
of the objective function

- Number of evaluations of the objective
function for a fixed accuracy level

e A benchmark of 25 functions

* Objective : standardizing tests performed on
metaheuristics for continuous optimization in
view of facilitating comparisons between
competing algorithms
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CEC’05 testing procedure (2/5)

Tests

e« 1™ test : study of the error

D dimension of the problem
25 runs
Single stopping criterion MaxEval=10000.D

Recording of |f(x)-f(xopt)| for each run at different
numbers of evaluations of the objective function

Building of Convergence Graphs

o 2" test : study of the number of function evaluations

Fixed accuracy level for each function of the
benchmark

- Computation of Success Rate and Performance Rate
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CEC’05 testing procedure (3/5)
Success and Performance rates

e Success rate

miumber of *successful runs

fotal number of runs

e Performance rate

mean

MaxEval  .total number of runs

number of successful runs
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CEC’05 testing procedure (4/5)
Benchmark

e 25 unimodal or multimodal functions

e Some characteristics :

- Shifted
- Rotated
- Optimum on bounds

* Interest : Avoid particular cases which can be
exploited by some algorithms

15/23



CEC’05 testing procedure (5/5)
Examples

Griewank Function (F7) Rastrigin Function (F9)
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Numerical results (1/5)
1 test, Unimodal problems
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Numerical results (2/5)
1™ test, Multimodal problems
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Numerical results (3/5)

Convergence Graphs

Convergence Graph for F3 problem Convergence Graph for F7 problem
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G-CMA-ES

Numerical results (4/5)

2" test, Unimodal problems

Number of solved functions

Success rate

F1

F2

F3

F4

1000

2400

6500

2900

100%

1.6 (25)

1(25)

1(25)

1(25)

EDA

98%

10 (25)

4.6 (25)

2.5(23)

4.1 (25)

DE

96%

29 (25)

19.2 (25)

18.5(20)

17.9 (25)

L-CMA-ES

86%

1.7 (25)

1.1 (25)

1(25)

65.5(7)

BLX-GL50

80%

19 (25)

17.1 (25)

14.5 (25)

SPC-PNX

80%

6.7 (25)

12.9 (25)

10.7 (25)

CoEVO

80%

23 (25

11.3 (25)

6.8 (25)

16.2 (25)

DMS-L-PSO

76%

12 (25

5(25)

1.8 (25)

L-SaDE

712%

10 (25

4.2 (25)

8 (16)

15.9 (24)

BLX-MA

59%

)
)
)
)

12 (25

15.4 (25)

25.9 (24)

K-PCX
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57%

1(25)

1(25)

19.7 (21)

TRIBES

80%

1.3 (25)

2.75 (25)

3.91(25)

6,7 (25)




Numerical results (5/5)
2" test, Multimodal problems
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Conclusions and perspectives

e Competitive algorithm
e Parameter-free

==p NO waste of time without loss of
performance

e Possible improvements :

- Better choice of adaptation rules
- More accurate strategies of displacement

- Hybridization with an Estimation of Distribution
Algorithm

-=p Better adaptation of the choices made
to the specificity of the problem
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Thanks for your attention
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Algorithm

Name

Reference

Hybrid Real-Coded Genetic Algorithm
with Female and Male Differentiation

BLX-GL50

[Garcia-Martinez and Lozano, 2005]

Real-Coded Memetic Algorithm

BLX-MA

[Molina et al., 2005]

Real Parameter Optimization Using
Mutation Step Co-evolution

CoEVO

[Posik (2005)]

Real-Parameter Optimization with Differential Evolution

DE

[Ronkkonen and Kukkonen, 2005]

Dynamic Multi-Swarm Particle Swarm
Optimizer with Local Search

DMS-L-PSO

[Liang and Suganthan, 2005]

Simple Continuous EDA

EDA

[Yuan and Gallagher, 2005]

Restart CMA Evolution Strategy with
Increasing Population Size

G-CMA-ES

[Augeret al., 2005a]

Population-Based, Steady-State Procedure
for Real-Parameter Optimization

[Sinha et al., 2005]

Advanced Local Search Evolutionary Algorithm

[Augeret al., 2005b]

Self-adaptive Differential Evolution Algorithm

[Qin and Suganthan, 2005]

Steady-State Real-Parameter Genetic Algorithm

[Ballester et al., 2005]




Pivot strategy

X=c1.alea(Hp)—|-cz.alea (Hg)

aIea(Hp) a point uniformly chosen in the hyper-
sphere of center p and radius ||p-9||

aIea(Hg) a point uniformly chosen in the hyper-
sphere of center g and radius ||p-9||
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Disturbed pivot strategy

X=c, .alea(H )+c,.alea(H )

P g

b:N(O,f(p)—f(m)

f(p)+f(g)
X=(14+b).X
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Local independent gaussians

ijgj—l— alea

(gj_Xj’ 8,~ X, )

normal
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