

TRIBES

A parameter-free particle swarm optimization algorithm

Y. COOREN, M. CLERC, P. SIARRY

7th EU/MEeting on Adaptive, Self-Adaptive, and Multi-Level Metaheuristics

November 16/17, 2006

Presentation outline

- Particle swarm optimization
- Why a parameter-free algorithm?
- TRIBES, the first parameter-free PSO algorithm
- CEC'05 testing procedure
- Numerical results
- Conclusions and perspectives

Particle Swarm Optimization (1/4)

Particle Swarm Optimization (2/4)

- Stochastic method
- Biological inspiration (fish schooling and bird flocking)
- Principle :
 - Generation of a swarm of particles in the search space
 - A fitness is associated to each particle
 - Particles move according to their own experience and that of the swarm
 - Convergence made possible by the cooperation between particles

Particle Swarm Optimization (3/4) Strategy of displacement

Particle Swarm Optimization (4/4) Algorithm

- Particles randomly initialized in the search space
- 2 stopping criteria :
 - Accuracy
 - Number of evaluations of the objective function

Why a parameter-free algorithm?

- Common problem among all metaheuristics
- Algorithms very dependent of parameters values
- Time consuming to find the optimal value of a parameter
- The tendency is to reduce the number of "free" parameters

TRIBES (1/4)

- A parameter-free particle swarm optimization algorithm
- Principles:
 - Swarm divided in "tribes"
 - At the beginning, the swarm is composed of only one particle
 - According to tribes' behaviors, particles are added or removed
 - According to the performances of the particles, their strategies of displacement are adapted

Adaptation of the swarm according to the performances of the particles

Tribes (2/4) Structural adaptations

- Definition of a status for each tribe: good, neutral or bad
- Definition of a status for each particle: good or neutral
- Removal of a particle: worst particle of a good tribe

 Generation of a particle: improvement of performances of a bad tribe

Tribes (3/4) Behavioral adaptations

- 3 possibilities of variations between 2 iterations :
 - Improvement of the performance (+)
 - Statu quo (=)
 - Deterioration of the performance (-)
- Memorization of the 2 last variations
- Choice of the strategy of displacement according to the 2 last variations

Gathered statuses	Strategy of displacement				
(= +) (+ +)	local by independent gaussians				
(+ =) (- +)	disturbed pivot				
() (= -) (+ -) (- =) (= =)	pivot				

Tribes (4/4) Algorithm

- structural adaptations must not occur at each iteration
- N_L: information links number at the moment of the last adaptation
- **n**: number of iterations since the last swarm's adaptation

CEC'05 testing procedure (1/5)

- Defined during th IEEE Congress on Evolutionary Computation 2005
- 2 tests:
 - Error values for a fixed number of evaluations of the objective function
 - Number of evaluations of the objective function for a fixed accuracy level
- A benchmark of 25 functions
- Objective: standardizing tests performed on metaheuristics for continuous optimization in view of facilitating comparisons between competing algorithms

CEC'05 testing procedure (2/5) Tests

- 1^{rst} test: study of the error
 - D dimension of the problem
 - 25 runs
 - Single stopping criterion MaxEval=10000.D
 - Recording of $|f(x)-f(x_{opt})|$ for each run at different numbers of evaluations of the objective function
 - Building of Convergence Graphs
- 2nd test: study of the number of function evaluations
 - Fixed accuracy level for each function of the benchmark
 - Computation of Success Rate and Performance Rate

CEC'05 testing procedure (3/5) Success and Performance rates

Success rate

Performance rate

```
MaxEval<sub>mean</sub>.total number of runs
number of successful runs
```

CEC'05 testing procedure (4/5) Benchmark

25 unimodal or multimodal functions

- Some characteristics:
 - Shifted
 - Rotated
 - Optimum on bounds
- Interest: Avoid particular cases which can be exploited by some algorithms

CEC'05 testing procedure (5/5) Examples

Griewank Function (F7)

Rastrigin Function (F9)

Numerical results (1/5) 1^{rst} test, Unimodal problems

		F1	F2	F3	F4	F5
D	10					
Fes=100000						
	1 st	0	0	4597.106467	5.644608E-09	0
	7 th	0	0	13055.935128	8.671009E-09	1.136868E-13
	13 th	0	0	21110.612218	9.399173E-09	4.985168E-11
	19 th	0	0	29909.419575	9.703854E-09	3.866887E-09
	25 th	0	5.68E-14	80596.986396	9.961525E-09	4.225578E-04
	Mean	0	2.27E-015	26848.899836	8.536590E-09	1.755978E-05
	Std dev	0	1.11E-14	18773.347486	2.048813E-09	8.272286E-05

Numerical results (2/5) 1^{rst} test, Multimodal problems

		F6	F7	F8	F9	F10	F11
D	10						
Fes=100000							
	1^{st}	0.004314	0.015287	0	2.984877	5.969754	2.792143
	7 th	0.541085	0.051984	2.84E-14	5.969754	9.098987	3.456094
	13 th	0.747254	0.073769	1.042691	7.959667	10.94454	4.158164
	19 th	1.103226	0.091044	19.93683	9.949586	12.934458	4.871277
	25 th	2.169582	0.201614	20.37673	16.914269	27.858783	6.097017
	Mean	0.85882	0.077474	7.222521	8.556642	12.118002	4.233992
	Std dev	0.570887	0.03942	9.199135	3.66922	4.660575	0.958315

Numerical results (3/5) Convergence Graphs

Numerical results (4/5) 2nd test, Unimodal problems

			F1	F2	F3	F4	F5
	Number of solved functions	Success rate	1000	2400	6500	2900	5900
G-CMA-ES	5	100%	1.6 (25)	1 (25)	1 (25)	1 (25)	1 (25)
EDA	5	98%	10 (25)	4.6 (25)	2.5 (23)	4.1 (25)	4.2 (25)
DE	5	96%	29 (25)	19.2 (25)	18.5 (20)	17.9 (25)	6.9 (25)
L-CMA-ES	5	86%	1.7 (25)	1.1 (25)	1 (25)	65.5 (7)	1 (25)
BLX-GL50	4	80%	19 (25)	17.1 (25)	-	14.5 (25)	4.7 (25)
SPC-PNX	4	80%	6.7 (25)	12.9 (25)	-	10.7 (25)	6.8 (25)
CoEVO	4	80%	23 (25)	11.3 (25)	6.8 (25)	16.2 (25)	-
DMS-L-PSO	4	76%	12 (25)	5 (25)	1.8 (25)	-	18.6 (20)
L-SaDE	4	72%	10 (25)	4.2 (25)	8 (16)	15.9 (24)	-
BLX-MA	3	59%	12 (25)	15.4 (25)	-	25.9 (24)	-
K-PCX	3	57%	1 (25)	1 (25)	-	19.7 (21)	-
TRIBES	4	80%	1.3 (25)	2.75 (25)	-	3.91 (25)	6,7 (25)

Numerical results (5/5) 2nd test, Multimodal problems

			F6	F7	F8	F9	F10	F11
	Number of solved functions	Success rate	7100	4700	59585	17000	55000	190000
G-CMA-ES	5	65%	1.5 (25)	1 (25)	-	4.5 (19)	1.2 (23)	1.4 (6)
K-PCX	3	45%	9.6 (22)	-	-	2.9 (24)	1 (22)	-
L-SaDE	3	37%	6.6 (24)	36.2 (6)	-	1 (25)	-	-
DMS-L-PSO	3	36%	1.3 (25)	126 (4)	-	2.1 (25)	-	-
DE	4	33%	7.3 (25)	255 (2)	-	10.6 (11)	-	1 (12)
L-CMA-ES	1	33%	7.7 (25)	1.2 (25)	-	-	-	-
BLX-GL50	3	25%	6.69 (25)	12.3 (9)	-	10 (3)	-	-
SPC-PNX	3	16%	1 (22)	383 (1)	-	-	-	5.8 (1)
BLX-MA	1	12%	-	-	-	5.7 (18)	-	-
EDA	2	3%	-	404 (1)	-	-	-	2.9 (3)
CoEVO	0	0	-	-	-	-	-	-
TRIBES	4	41%	3.8 (25)	0.16 (25)	1 (10)	63 (2)	-	-

Conclusions and perspectives

- Competitive algorithm
- Parameter-free
 - No waste of time without loss of performance
- Possible improvements:
 - Better choice of adaptation rules
 - More accurate strategies of displacement
 - Hybridization with an Estimation of Distribution Algorithm
 - Better adaptation of the choices made to the specificity of the problem

Thanks for your attention

Algorithm	Name	Reference
Hybrid Real-Coded Genetic Algorithm with Female and Male Differentiation	BLX-GL50	[García-Martínez and Lozano, 2005]
Real-Coded Memetic Algorithm	BLX-MA	[Molina et al., 2005]
Real Parameter Optimization Using Mutation Step Co-evolution	CoEVO	[Posik (2005)]
Real-Parameter Optimization with Differential Evolution	DE	[Rönkkönen and Kukkonen, 2005]
Dynamic Multi-Swarm Particle Swarm Optimizer with Local Search	DMS-L-PSO	[Liang and Suganthan, 2005]
Simple Continuous EDA	EDA	[Yuan and Gallagher, 2005]
Restart CMA Evolution Strategy with Increasing Population Size	G-CMA-ES	[Auger et al., 2005a]
Population-Based, Steady-State Procedure for Real-Parameter Optimization	K-PCX	[Sinha et al., 2005]
Advanced Local Search Evolutionary Algorithm	L-CMA-ES	[Auger et al., 2005b]
Self-adaptive Differential Evolution Algorithm	L-SaDE	[Qin and Suganthan, 2005]
Steady-State Real-Parameter Genetic Algorithm	SPC-PNX	[Ballester et al., 2005]

Pivot strategy

$$\begin{split} X \! = \! c_{_{1}}.alea(H_{_{p}}) \! + \! c_{_{2}}.alea(H_{_{g}}) \\ c_{_{1}} \! = \! \frac{f(p)}{f(p) \! + \! f(g)} \\ c_{_{2}} \! = \! \frac{f(g)}{f(p) \! + \! f(g)} \end{split}$$

alea(H_p) a point uniformly chosen in the hypersphere of center p and radius ||p-g|| alea(H_g) a point uniformly chosen in the hypersphere of center g and radius ||p-g||

Disturbed pivot strategy

$$\begin{split} X &= c_{_{1}}.alea(H_{_{p}}) + c_{_{2}}.alea(H_{_{g}}) \\ b &= N(0, \frac{f(p) - f(g)}{f(p) + f(g)}) \\ X &= (1 + b).X \end{split}$$

Local independent gaussians

$$X_{j} = g_{j} + alea_{normal}(g_{j} - X_{j}, ||g_{j} - X_{j}||)$$